2017년 6월 14일 수요일

[keras] image generater

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import cv2
import numpy as np


datagen = ImageDataGenerator(
        rotation_range=180,
        width_shift_range=0.5,
        height_shift_range=0.5,
        shear_range=0.3,
        zoom_range=0.6,
        horizontal_flip=True,
        vertical_flip = True,
        fill_mode = "wrap")


img = cv2.imread(r"C:\image data\test\defect 001.jpg", 0)

#tensorflow backend
x = img_to_array(img)  # this is a Numpy array with shape (150, 150 , 1)

x = x.reshape( (1,) + x.shape )  # this is a Numpy array with shape (1, 150, 150 , 1~3(ch) )
i = 0
for batch in datagen.flow_from_directory( directory= r"C:\image data\defect"
                                         , target_size = (64,64)
                                         , color_mode = "grayscale"
                                         , batch_size=1
                                         , shuffle = True
                                         , save_to_dir=r'C:\image data\test\result'
                                         , save_prefix='defect'
                                         ):
    i += 1
    if i > 50000:
        break






댓글 없음:

댓글 쓰기